stratasys

THE **3D PRINTING SOLUTIONS** COMPANY

Sacrificial Tools with Stratasys FDM Technology

DAVIDE FERRULLI davide.ferrulli@stratasys.com Carrara, 7 Aprile 2016

Cell. 348–766 9675

Stratasys

For more than 25 years, Stratasys has been at the forefront of 3D printing and additive manufacturing innovation.

HEADQUARTERED IN EDEN PRAIRIE, MINNESOTA AND REHOVOT, ISRAEL OVER **800** GRANTED OR PENDING ADDITIVE MANUFACTURING **PATENTS GLOBALLY**

146024 CUMULATIVE SYSTEMS SOLD* 100000 Makerbot** **OVER 30** TECHNOLOGY AND LEADERSHIP AWARDS

> *31 December 2015 **5 April 2016

PUBLICALLY TRADED ON NASDAQ (SSYS)

\$696 MILLIONS REVENUE 2015

Shaping Performance Motorsports

"Several really complex design elements would have been almost impossible to replicate through any other method of production."

THE 3D PRINTING SOLUTIONS COMPAN

Edward Green, Mission Motors

NESSION

6

MISSION

TEXAS INSTRUMENTS

COSWORTH

KOSMAN

Shaping the Art and Science of Travel

"This game-changing technology also decreases total energy used in production by up to 90 percent compared to traditional methods."

11

Peter Sander, Head of Emerging Technologies and Concepts at Airbus

Sacrificial Cores & Mandrels: Application Overview

<u>Complex</u> hollow composite part production

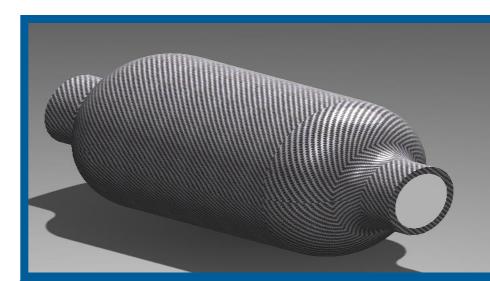
- Ducts and tubing
- Tanks and reservoirs
- Tubular or hollow structural members

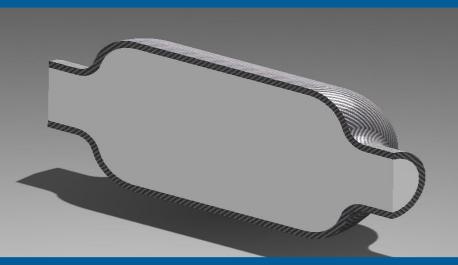


Sacrificial Cores & Mandrels: Application Overview

Processes

- Filament-wound composites
- Pre-preg, wet lay-up, resin-transfer


Trapped Molds


Hollow composites

- Geometry traps core
- Core must be removable
 - Soluble material
 - Collapsible material

Compatible with composite process

- Temperature
- Pressure

Traditional Solutions

Several options

Geometry and manufacturing process dependant

Common traditional methods

- Eutectic salts
- Soluble ceramics
- Flexible urethanes
- Clamshell tooling

Eutectic Salt Cores

Pros

- Very hard, durable
- High temperature
- High pressure

- Requires metal casting mold
- Difficult to remove
 - High temperature water
 - High pressure streams
 - Chisels
- High scrap rate

Soluble Ceramic Cores

Pros

- High temperature
- Gentle water dissolve removal
- Good surface finish

- Cast (machined mold)
- Very brittle
- Long / thin parts don't work
- Limited manufacturing process compatibility

Flexible Urethane

Pros

- Gentle removal process
- Good surface finish
- Reusable core

- Cast (machined mold)
- High CTE
- Simple geometries
- Requires solid, removable insert

Cores & Mandrels: Traditional Process

Production of cores

- Machined tooling to cast cores
- Machined multi-piece removable core

lssues:

- Geometry limitations
- Inconsistent parts
- Lack of repeatability

Core mold.

Forming sacrificial core in mold.

Clamshell Tooling (Lay up halves and bond)

Production of clamshell tooling

- Option 1: Pattern-based mold
 - Pull mold from pattern
- Option 2: Machined mold

Pros

- Reusable
- Good external surface finish

- Geometry limitations
- Tooling lead time
- Many mold components
- Seams when access is limited
- Internal surface finish, wrinkles

Clamshell tooling with pattern.

Clamshell tool after assembly.

FDM Sacrificial Tools

Replaces clamshell tooling

- Eliminates seams strengthens part
 Improves internal surface accuracy

Replaces traditional core types

- Eliminates tooling for core and casting of core
 - Automated core productionReduced time and labor

 - Core/mandrel dissolved after part cures
- Improves consistency, accuracy and strength
- Easy core removal (washes or breaks away)
- Sparse or solid interiors to optimize washout time and strength
- Epoxy resin compatible
- No changes to manufacturing process

Carbon fiber manifold.

Sacrificial Cores & Mandrels: Competitive Overview*

	Ease of Removal	Consistency	Low Production Labor	Design Freedom	Core Strength	Requires Dedicated Tooling
Water Soluble	üüüü	ü	_	ü	ü	Yes
Removable Cores	_	üüüü	(Reusable)	-	üüüü	Νο
Shape Memory Bladders	üüü	_	ü	_	üüü	Yes
Sand Cores	ü	üü	-	ü	ü	Yes
Eutectic Salts	_	üü	_	ü	üüü	Yes
FDM	üüü	üüü	üüü	üüüü	üüü	Νο
15 STRAT COMPACTORINELY SOLUTIONS ACTION ANY = Low, UU = Good, UUU = Great): * Subjective qualities based on expert analysis stratasys						

Some References

Motorsports

Automotive - Performance

Bicycles

Motorsports

Aerospace

Automotive

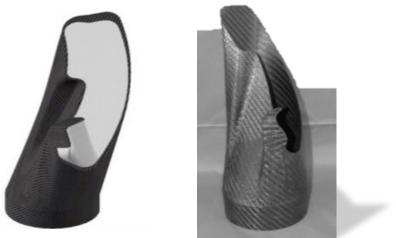
Sacrificial Cores & Mandrels

Sacrificial Cores & Mandrels: FDM Benefits

Time and cost savings

- Up to 95% reduction
- As little as 1 day for concept to part realization

Labor reduction


- Less tooling/setup & hands-free core creation
- No bonding of sections

Improved composite parts

- Single-piece construction
- Include integrated hardware
- Control internal surface finish and accuracy

Lower risk

- Minimal investment & easy to modify (no tooling)
- Improved consistency and yield of cores

Case Study CPC (Modena)

Composite Manufacturing

Conventional Manufacturing

- 3D Design
- Mould Design
- Mould Machining
- Hand lay-up
- Bag and cure part
- Final part

FDM Composite Application

3D Design

Consumable Core Design

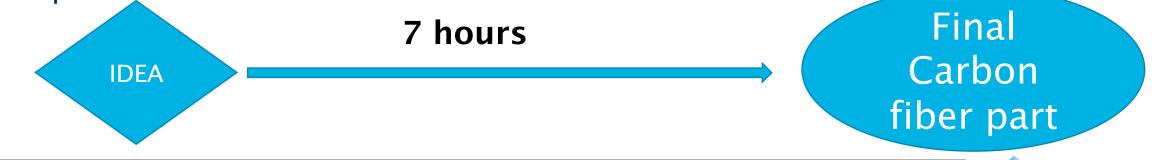
Core in FDM Support

Hand lay-up

Bag and cure part

Break the core

Final part


Case study: Double airduct

stratasvs

FDM Composite Application

Consumable Core Design (15 min) Build consumable core (4.5 h) Hand lay-up (15 min) Bag and cure part (2.5 h) Break the core (30 min) Final part

Case Study Champion Motorsport

Sacrificial Cores & Mandrels: Case Study - Champion Motorsport

Porsche 997 Turbo inlet duct, Y-pipe, manifold

- Better airflow
- Lighter
- Tried many approaches none were sellable
 - Bonded halves
 - Molded sand core

FDM sacrificial core method

- Seam-free construction w/ consistent quality
- Control over interior and exterior

FDM composite core benefits

- ~85% faster
- ~85% less expensive

Carbon fiber inlet ducts.

Method	Cost	Time	
Traditional	unusable	unusable	
FDM core*	\$150	1 day	
Savings	~85%	~85%	

* Produced in-house.

Sacrificial Cores & Mandrels: Compatibility

Resin systems

- Consult resin manufacturer for compatibility
 - Core is dissolved in a base solution
 - Most epoxies are compatible
- **Consolidation methods**
 - Vacuum/autoclave
 - < 121 °C (250 °F) & 550 kPa (80 psi)
 - Envelope bagging
 - Through-core bagging
 - Shrink tape/tubing
 - Bladders

Temperature

- SR-30: 93 °C
- SR-100: 138 °C
- Ultem S1: 175 °C

Pre-preg epoxy resin system.

Thermal cure of vacuum-bagged composite teasys


Sacrificial Cores & Mandrels: Materials

Materials

- ULTEM[®] 9085 resin support (S1) (alternative)
 - Break-away
 - Higher cure temperatures
 - < 175 °C (350 °F)
 - Compatible with aluminum inserts

Process

- ULTEM[®] 9085 resin support
 - Build core/mandrel
 - Seal core
 - Consolidate & cure composite
 - Apply acetone
 - Manually remove core/mandrel
 - Does not dissolve
 - Requires good access

Cured composite on ULTEM S1 core.

ULTEM S1 core break out.

Thank You

